|
A nonlinear minimization routine, E04UCF |
According to the Fortran Library Manual, the prototype for subroutine E04UCF looks like this:
SUBROUTINE E04UCF(N, NCLIN, NCNLN, LDA, LDCJ, LDR, A, BL, BU, CONFUN,
1 OBJFUN, ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD,
2 R, X, IWORK, LIWORK, WORK, LWORK, IUSER, USER, IFAIL)
INTEGER N, NCLIN, NCNLN, LDA, LDCJ, LDR, ITER,
1 ISTATE(N+NCLIN+NCNLN), IWORK(LIWORK), LIWORK, LWORK,
2 IUSER(*), IFAIL
DOUBLE PRECISION A(LDA,*), BL(N+NCLIN+NCNLN),
1 BU(N+NCLIN+NCNLN), C(*), CJAC(LDCJ,*),
2 CLAMDA(N+NCLIN+NCNLN), OBJF, OBJGRD(N), R(LDR,N),
3 X(N), WORK(LWORK), USER(*)
EXTERNAL CONFUN, OBJFUN
The subroutine E04UCF is designed to minimize an arbitrary
smooth function f(x) subject to constraints (which may include
simple bounds on the variables, linear constraints and smooth nonlinear
constraints).
The function f(x) to be minimized is evaluated by user-supplied routine argument OBJFUN to E04UCF, which is declared as
SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, USER)
INTEGER MODE, N, NSTATE, IUSER(*)
DOUBLE PRECISION X(N), OBJF, OBJGRD(N), USER(*)
The routine OBJFUN may also need to evaluate the gradient of the objective
function.
In addition, a user-supplied routine argument CONFUN is needed to
evaluate nonlinear constraints of the minimization problem:
SUBROUTINE CONFUN(MODE, NCNLN, N, LDCJ, NEEDC, X, C, CJAC, NSTATE,
1 IUSER, USER)
INTEGER MODE, NCNLN, N, LDCJ, NEEDC(NCNLN), NSTATE,
1 IUSER(*)
DOUBLE PRECISION X(N), C(NCNLN), CJAC(LDCJ,N), USER(*)
For full description of the roles of all routine arguments consult
the E04UCF routine document in the NAG Fortran Library Manual.
The NAG Fortran Library uses a simple integer, IFAIL, to return an error code (compare this with the MagError structure type used by the C Library).
Although we are going to call a routine from the NAG Fortran Library, we still implement our interface code in C for convenience. Thus the full program will be a mixture of three languages - Java, C and Fortran.
// Declaration of the Native (C) function
private native int e04ucf(int n, int nclin, int ncnln,
double[] a, int lda, double[] bl, double[] bu,
String confun, String objfun,
double[] objf, double[] objgrd, double[] x);
i.e. a method with return type int. Note that we choose not
to pass all possible arguments - for example, the arrays cjac, clamda
and istate are missing. We could include these arguments if we
wanted the information they contain to be returned to Java; here we don't.
Since we are also not using the ifail argument,
we will use the int return value to send back any error
code.
As with Example 3,
note that we cannot pass subroutine arguments directly from Java
to C, and so we here we just pass the names of methods via the
String arguments confun and objfun.
public class Minimization
{
// Declaration of C native function, NAG routine e04ucf
private native int e04ucf(int n, int nclin, int ncnln,
double[] a, int lda, double[] bl, double[] bu,
String confun, String objfun,
double[] objf, double[] objgrd, double[] x);
// An interface to e04uef, an option setting routine for e04ucf
private native void e04uef(String option);
static
{
System.loadLibrary("nagCJavaInterface");
}
/* A routine to evaluate the nonlinear constraint functions and
Jacobian. This gets called from NAG routine e04ucf via the
Java Native Interface. N.B. cjac is stored as a 1D array
rather than 2D array for convenience. */
private void confun(int mode, int ncnln, int n, int ldcj,
int[] needc, double[] x, double[] c,
double[] cjac, int nstate)
{
if (nstate == 1)
{
// First call to confun. Set all Jacobian elements to zero.
// Note that this will only work when 'Derivative Level = 3'
// (the default (see Section 11.2).
for (int j=0; j<n; j++)
{
for (int i=0; i<ncnln; i++)
{
// Notice how we address the array cjac so that contents
// are in the order required by a 2D Fortran array.
cjac[i+j*ldcj] = 0.0;
}
}
}
if (needc[0] > 0)
{
if (mode == 0 || mode == 2)
{
c[0] = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3];
}
if (mode == 1 || mode == 2)
{
cjac[0+0*ldcj] = 2.0e0*x[0];
cjac[0+1*ldcj] = 2.0e0*x[1];
cjac[0+2*ldcj] = 2.0e0*x[2];
cjac[0+3*ldcj] = 2.0e0*x[3];
}
}
if (needc[1] > 0)
{
if (mode == 0 || mode == 2)
{
c[1] = x[0]*x[1]*x[2]*x[3];
}
if (mode == 1 || mode == 2)
{
cjac[1+0*ldcj] = x[1]*x[2]*x[3];
cjac[1+1*ldcj] = x[0]*x[2]*x[3];
cjac[1+2*ldcj] = x[0]*x[1]*x[3];
cjac[1+3*ldcj] = x[0]*x[1]*x[2];
}
}
}
/* A routine to evaluate the objective function and its gradient.
This gets called from NAG routine e04ucf via the Java Native
Interface */
private double objfun(int mode, int n, double[] x,
double[] objgrd, int nstate)
{
double objf = 0.0;
if (mode == 0 || mode == 2)
{
objf = x[0]*x[3]*(x[0]+x[1]+x[2]) + x[2];
}
if (mode == 1 || mode == 2)
{
objgrd[0] = x[3]*(2.0e0*x[0]+x[1]+x[2]);
objgrd[1] = x[0]*x[3];
objgrd[2] = x[0]*x[3] + 1.0e0;
objgrd[3] = x[0]*(x[0]+x[1]+x[2]);
}
return objf;
}
// Main program
public static void main(String args[])
{
Minimization nlp = new Minimization();
// Pass the names of the constraint function and the objective
// function evaluation routines.
nlp.Solve("confun", "objfun");
}
private void Solve(String confunction, String objfunction)
{
// n -- the number of variables (excluding slacks)
int n = 4;
// nclin -- the number of linear constraints
int nclin = 1;
// ncnln -- the number of nonlinear constraints
int ncnln = 2;
// a[lda*n] -- array of linear constraints, where
// lda = max(1, nclin). Although the NAG routine e04ucf
// has A as a two dimensional matrix, for ease of access via the
// Java Native Interface (JNI) it is much easier to store it as
// a one dimensional array in Java. We still require the
// value lda which Fortran will be told is the leading dimension
// of its 2D array.
int lda = java.lang.Math.max(1,nclin);
double[] a;
a = new double[lda*n];
// a[i+j*lda] references array element a[i,j] in Fortran order.
a[0+0*lda] = 1.0;
a[0+1*lda] = 1.0;
a[0+2*lda] = 1.0;
a[0+3*lda] = 1.0;
// bl[n+nclin+ncnln] -- lower bounds for all the variables and general constraints
double[] bl = {1.0, 1.0, 1.0, 1.0, -1.0e+25, -1.0e+25, 25.0};
// bu[n+nclin+ncnln] -- upper bounds for all the variables and general constraints
double[] bu = {5.0, 5.0, 5.0, 5.0, 20.0, 40.0, 1.0e+25};
// x[n] -- initial estimate of the solution
double[] x = {1.0, 5.0, 5.0, 1.0};
// objf[1] -- an array of length 1 to hold the final objective
// function value computed by e04ucf
double[] objf = new double[1];
// objgrd[n] -- an array to hold the gradient of the objectve function,
// computed by e04ucf
double[] objgrd = new double[n];
// ifail -- output error variable.
int ifail;
int i;
// Set some options for e04ucf
e04uef("Nolist"); // Turn off echoing of options by e04uef
e04uef("Print Level = 0"); // Turn off e04ucf internal monitoring information
System.out.println(" Running e04ucf example program from Java");
System.out.println(" ----------------------------------------");
System.out.println(" Problem:");
System.out.println("");
System.out.println(" Minimize F(x) = x0*x3*(x0 + x1 + x2) + x2");
System.out.println(" Subject to bounds");
for (i = 0; i < n; i++)
System.out.println(" " + bl[i] + " <= x" + i + " <= " + bu[i]);
System.out.println(" General linear constraint");
System.out.println(" x0 + x1 + x2 + x3 <= 20");
System.out.println(" Nonlinear constraints");
System.out.println(" x0^2 + x1^2 + x2^2 + x3^2 <= 40");
System.out.println(" x0*x1*x2*x3 >= 25");
// Call the NAG Library routine e04ucf via the Java Native Interface
ifail = e04ucf(n, nclin, ncnln, a, lda, bl, bu, confunction, objfunction,
objf, objgrd, x);
// Output some results
System.out.println("");
System.out.println(" Results returned by NAG nonlinear minimization routine e04ucf");
System.out.println(" -------------------------------------------------------------");
System.out.println(" Fail code ifail = " + ifail);
if (ifail == 0)
{
System.out.println(" Final objective function value = " + objf[0]);
System.out.println(" Solution vector x:");
for (i = 0; i < n; i++)
System.out.println(" x[" + i + "] = " + x[i]);
}
}
}
Some points to note about this program:
We can compile our Java program with the following command:
% javac Minimization.java
% javah -jni MinimizationThe generated header file, Minimization.h, contains these two function prototypes for ther two JNI functions:
JNIEXPORT jint JNICALL Java_Minimization_e04ucf
(JNIEnv *, jobject, jint, jint, jint, jdoubleArray, jint, jdoubleArray,
jdoubleArray, jstring, jstring, jdoubleArray, jdoubleArray, jdoubleArray);
JNIEXPORT void JNICALL Java_Minimization_e04uef
(JNIEnv *, jobject, jstring);
#include "Minimization.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <jni.h>
/* Nasty global variables to store pointers to Java environment
and methods so that we can use them in different parts of this
C code. */
JNIEnv *globalJavaEnv;
jobject globaljavaobject;
jmethodID globalConfunID;
jmethodID globalObjfunID;
/* This routine has the interface required by NAG routine e04ucf for
argument confun. It makes calls back to the Java version of confun */
void confunFun(int *mode, int *ncnln, int *n,
int *ldcj, int needc[], double x[], double c[],
double cjac[], int *nstate, int iuser[], double user[])
{
int i;
int *jneedcpt;
double *jxpt, *jcpt, *jcjacpt;
/* First create some Java arrays to pass to confun */
jintArray jneedc = (*globalJavaEnv)->NewIntArray(globalJavaEnv, *ncnln);
jdoubleArray jx = (*globalJavaEnv)->NewDoubleArray(globalJavaEnv, *n);
jdoubleArray jc = (*globalJavaEnv)->NewDoubleArray(globalJavaEnv, *ncnln);
jdoubleArray jcjac = (*globalJavaEnv)->NewDoubleArray(globalJavaEnv, ((*ldcj)*(*n)));
/* Copy input arguments to Java arrays needc and x */
jneedcpt = (*globalJavaEnv)->GetIntArrayElements(globalJavaEnv, jneedc, 0);
jxpt = (*globalJavaEnv)->GetDoubleArrayElements(globalJavaEnv, jx, 0);
for (i = 0; i < *ncnln; i++)
jneedcpt[i] = needc[i];
for (i = 0; i < *n; i++)
jxpt[i] = x[i];
/* Release array elements back to Java (this puts the values
back into Java arrays jneedc and jx) */
(*globalJavaEnv)->ReleaseIntArrayElements(globalJavaEnv, jneedc, jneedcpt, 0);
(*globalJavaEnv)->ReleaseDoubleArrayElements(globalJavaEnv, jx, jxpt, 0);
/* Call the Java method via its method ID */
(*globalJavaEnv)->CallVoidMethod(globalJavaEnv, globaljavaobject,
globalConfunID, (jint)(*mode),
(jint) (*ncnln), (jint)(*n),
(jint)(*ldcj), jneedc, jx, jc,
jcjac, (jint)(*nstate));
/* Copy results from Java arrays back to C arrays */
jcpt = (*globalJavaEnv)->GetDoubleArrayElements(globalJavaEnv, jc, 0);
jcjacpt = (*globalJavaEnv)->GetDoubleArrayElements(globalJavaEnv, jcjac, 0);
for (i = 0; i < *ncnln; i++)
c[i] = jcpt[i];
for (i = 0; i < (*ldcj)*(*n); i++)
cjac[i] = jcjacpt[i];
/* Release array elements back to Java to free memory */
(*globalJavaEnv)->ReleaseDoubleArrayElements(globalJavaEnv, jc, jcpt, 0);
(*globalJavaEnv)->ReleaseDoubleArrayElements(globalJavaEnv, jcjac, jcjacpt, 0);
}
/* This routine has the interface required by NAG routine e04ucf for
argument objfun. It makes calls back to the Java version of objfun */
void objfunFun(int *mode, int *n, double x[], double *objf, double objgrd[],
int *nstate, int iuser[], double user[])
{
int i;
double *jobjgrdpt;
/* First create some Java arrays to pass to objfun */
jdoubleArray jx = (*globalJavaEnv)->NewDoubleArray(globalJavaEnv, *n);
jdoubleArray jobjgrd = (*globalJavaEnv)->NewDoubleArray(globalJavaEnv, *n);
/* Copy input array x to Java array jx */
double *jxpt = (*globalJavaEnv)->GetDoubleArrayElements(globalJavaEnv, jx, 0);
for (i = 0; i < *n; i++)
jxpt[i] = x[i];
/* Release array elements back to Java (this puts the values into jx) */
(*globalJavaEnv)->ReleaseDoubleArrayElements(globalJavaEnv, jx, jxpt, 0);
/* Call Java objfun which fills in array objgrd and returns objf */
*objf = (*globalJavaEnv)->CallDoubleMethod(globalJavaEnv, globaljavaobject,
globalObjfunID, (jint) (*mode),
(jint) (*n), jx, jobjgrd,
(jint) (*nstate));
/* Get results back from Java to C array objgrd */
jobjgrdpt = (*globalJavaEnv)->GetDoubleArrayElements(globalJavaEnv,
jobjgrd, 0);
for (i = 0; i < *n; i++)
objgrd[i] = jobjgrdpt[i];
/* Release array elements back to Java to free memory */
(*globalJavaEnv)->ReleaseDoubleArrayElements(globalJavaEnv, jobjgrd,
jobjgrdpt, 0);
}
JNIEXPORT jint JNICALL Java_Minimization_e04ucf
(
JNIEnv *env,
jobject object,
jint n,
jint nclin,
jint ncnln,
jdoubleArray a,
jint lda,
jdoubleArray bl,
jdoubleArray bu,
jstring confun,
jstring objfun,
jdoubleArray objf,
jdoubleArray objgrd,
jdoubleArray x
)
{
/* Local variables and arrays */
int ldcj;
int ldr;
int iter;
int *istate;
double *c;
double *cjac;
double *clamda;
double *r;
int liwork;
int *iwork;
int lwork;
double *work;
int ifail;
/* N.B. we choose not to use iuser and user arrays in our evaluation
functions, so these are empty arrays. */
int iuser[1];
double user[1];
jclass cls;
const char *confunction;
const char *objfunction;
jdouble *a_pt, *bl_pt, *bu_pt, *x_pt, *objf_pt, *objgrd_pt;
/* Array leading dimension information required by the Fortran routine */
if (ncnln > 0)
ldcj = ncnln;
else
ldcj = 1;
ldr = n;
/* Compute the amount of workspace we need to supply to e04ucf */
liwork = 3 * n + nclin + 2 * ncnln;
if (ncnln == 0 && nclin == 0)
lwork = 20 * n;
else if (ncnln == 0 && nclin > 0)
lwork = 2 * n*n + 20 * n + 11 * nclin;
else
lwork = 2 * n*n + n*nclin + 2*n*ncnln + 20*n + 11*nclin + 21*ncnln;
/* Allocate arrays of appropriate size. */
/* Note that we store cjac as a one dimensional array rather than
a 2D array as in Fortran, for convenience in communication with
Java. */
istate = (int *)malloc((n+nclin+ncnln)*sizeof(int));
c = (double *)malloc((ncnln)*sizeof(double));
cjac = (double *)malloc((ldcj*n)*sizeof(double));
clamda = (double *)malloc((n+nclin+ncnln)*sizeof(double));
r = (double *)malloc((ldr*n)*sizeof(double));
iwork = (int *)malloc((liwork)*sizeof(int));
work = (double *)malloc((lwork)*sizeof(double));
/* Copy the Java env pointers to global space
so that confunFun and objfunFun can access them. */
globalJavaEnv = env;
globaljavaobject = object;
/* Get hold of the name of the user's Java evaluation functions. */
confunction = (*env)->GetStringUTFChars(env, confun, 0);
objfunction = (*env)->GetStringUTFChars(env, objfun, 0);
/* Now we have the Java evaluation function names we can use
them to get hold of handles (method IDs) to the functions.
Once more, the method IDs are stored globally so that confunFun
and objfunFun can use them. Note that the Java function signatures
must be correct. You can find out the signatures after compiling
the Java program Minimization.java by using the command
% javap -private -s Minimization
*/
cls = (*env)->GetObjectClass(env, object);
globalConfunID = (*env)->GetMethodID(env, cls, confunction, "(IIII[I[D[D[DI)V");
globalObjfunID = (*env)->GetMethodID(env, cls, objfunction, "(II[D[DI)D");
/* Free up the Java string argument so we don't leak memory. */
(*env)->ReleaseStringUTFChars(env, confun, confunction);
(*env)->ReleaseStringUTFChars(env, objfun, objfunction);
if (globalConfunID == 0)
{
printf("Cannot find confun method \"%s\" with signature \"(IIII[I[D[D[DI)V\"\n",
confunction);
return -1;
}
if (globalObjfunID == 0)
{
printf("Cannot find objfun method \"%s\" with signature \"(II[D[DI)D\"\n",
objfunction);
return -1;
}
/* Extract the arrays from Java */
a_pt = (*env)->GetDoubleArrayElements(env, a, 0);
bl_pt = (*env)->GetDoubleArrayElements(env, bl, 0);
bu_pt = (*env)->GetDoubleArrayElements(env, bu, 0);
objf_pt = (*env)->GetDoubleArrayElements(env, objf, 0);
objgrd_pt = (*env)->GetDoubleArrayElements(env, objgrd, 0);
x_pt = (*env)->GetDoubleArrayElements(env, x, 0);
/* Call to main NAG Library routine e04ucf */
ifail = -1;
#ifdef WINDOWS
E04UCF
#else
e04ucf_
#endif
(&n, &nclin, &ncnln, &lda, &ldcj, &ldr, a_pt, bl_pt, bu_pt,
confunFun, objfunFun, &iter, istate, c, cjac, clamda,
objf_pt, objgrd_pt, r, x_pt, iwork, &liwork, work, &lwork,
iuser, user, &ifail);
/* Release the array elements back to Java and free memory. */
(*env)->ReleaseDoubleArrayElements(env, a, a_pt, 0);
(*env)->ReleaseDoubleArrayElements(env, bl, bl_pt, 0);
(*env)->ReleaseDoubleArrayElements(env, bu, bu_pt, 0);
(*env)->ReleaseDoubleArrayElements(env, objf, objf_pt, 0);
(*env)->ReleaseDoubleArrayElements(env, objgrd, objgrd_pt, 0);
(*env)->ReleaseDoubleArrayElements(env, x, x_pt, 0);
return ifail;
}
// Interface to option setting routine e04uef
JNIEXPORT void JNICALL Java_Minimization_e04uef
(JNIEnv *env, jobject object, jstring option)
{
const char *coption;
/* Get hold of the Java option string. */
coption = (*env)->GetStringUTFChars(env, option, 0);
/* Call the option setting routine */
#ifdef WINDOWS
E04UEF(coption, strlen(coption));
#else
e04uef_(coption, strlen(coption));
#endif
/* Free up the Java string argument so we don't leak memory. */
(*env)->ReleaseStringUTFChars(env, option, coption);
}
The function named Java_Minimization_e04ucf is our C implementation of the Java-declared method e04ucf.
We cannot pass the Java methods objfun and confun which evaluate the objective function and nonlinear constraints directly to the NAG Fortran Library routine E04UCF, so we need to wrap them in C functions. These C functions we name objfunFun and confunFun respectively:
void objfunFun(int *mode, int *n, double x[], double *objf, double objgrd[],
int *nstate, int iuser[], double user[]);
void confunFun(int *mode, int *ncnln, int *n,
int *ldcj, int needc[], double x[], double c[],
double cjac[], int *nstate, int iuser[], double user[]);
These functions have the argument types and return types
required by the NAG Library routine E04UCF. Notice in particular that
all scalar arguments (such as mode) are passed as pointers,
as required by Fortran. Further, notice that argument cjac
is declared as a one-dimensional array rather than the 2-D array
specified by the Fortran routine. We do this because 2-D Java arrays
do not map easily onto Fortran 2-D arrays.
Inside objfunFun and confunFun we do nothing but call the equivalent Java methods. Once again, the trick is in knowing how to make these calls to Java. We do this using the JNI functions CallDoubleMethod for objfun (because in Java we defined that method to have return type double) and CallVoidMethod for confun.
The Java methods objfun and confun both need to be passed array arguments, elements of which the methods need to fill in. As with Example 3, we obtain the method ID of the two methods and store them in global variables in our C code so that they can be accessed from inside the C evaluation functions as well as the main JNI function. These IDs are obtained by passing the appropriate names and signatures to calls of JNI function GetMethodID. Note that a good way to discover Java method signatures is to use the command
% javap -private -s Minimizationafter compiling the Java program Minimization.java.
A complication is that our C functions objfunFun and confunFun need to pass Java arrays to the Java methods, but themselves have only C (or Fortran) style arrays. Therefore the C code needs to create Java arrays, then copy the contents of the C arrays to the Java arrays. To create a Java double array, we use the JNI function NewDoubleArray followed by a call of GetDoubleArrayElements to get a C pointer to the array elements, then ReleaseDoubleArrayElements to put the C contents into the Java array, before calling the Java method. On return from the Java method we again call GetDoubleArrayElements to obtain the results. For integer arrays, JNI functions NewIntArray, GetIntArrayElements and ReleaseIntArrayElements are appropriate. It is very important to get the order of calls to these JNI functions exactly right to ensure that data is in the right place at the right time. Follow the example in MinimizationImp.c.
In this example all results are returned to Java via the array arguments
which came from the Java call to the native method - apart from the
error code IFAIL which is returned via the function name. Notice
that we declared the argument objf, which contains the
optimal function value, as an array of length 1. This is because Java
methods cannot update the contents of scalar arguments, but can update
array contents.
% cc -c -I/usr/java/include -I/usr/java/include/solaris \
-I/usr/local/NAG/include -I/usr/local/NAG/include MinimizationImp.c
% ld -G -z defs MinimizationImp.o -o libnagCJavaInterface.so \
/usr/local/NAG/lib/libnag.so -lm -lc
Recall that on other UNIX machines it may be necessary to add further libraries at link time - see note.
C:> cl -DWINDOWS -Ic:\j2sdk1.4.2_02\include -Ic:\j2sdk1.4.2_02\include\win32
/Gz -LD MinimizationImp.c
c:\fldll204z\lib\nag.lib -FenagCJavaInterface.dll
The compiler flags used were described in
Section 7 of Example 1.
Note that when building under Microsoft Windows we also add
the C compiler switch -DWINDOWS to tell the C code
that the name of the Fortran Library routines E04UCF and E04UEF must be
given in upper case, as required by Windows versions of the
NAG Fortran Library. For UNIX machines the name will typically
be in lower case with an appended underscore, when called from C,
i.e. "e04ucf_".
% java MinimizationThe expected output looks like this:
Running e04ucf example program from Java
----------------------------------------
Problem:
Minimize F(x) = x0*x3*(x0 + x1 + x2) + x2
Subject to bounds
1.0 <= x0 <= 5.0
1.0 <= x1 <= 5.0
1.0 <= x2 <= 5.0
1.0 <= x3 <= 5.0
General linear constraint
x0 + x1 + x2 + x3 <= 20
Nonlinear constraints
x0^2 + x1^2 + x2^2 + x3^2 <= 40
x0*x1*x2*x3 >= 25
Results returned by NAG nonlinear minimization routine e04ucf
-------------------------------------------------------------
Fail code ifail = 0
Final objective function value = 17.014017289134703
Solution vector x:
x[0] = 1.0
x[1] = 4.742999642848296
x[2] = 3.821149976895378
x[3] = 1.379408294178579
(If you get an error message saying that a library cannot be
located, see the
tip given in
Example 1).
% javac Minimization.java
% javah -jni Minimization
% cc -c -I/usr/java/include -I/usr/java/include/solaris \
MinimizationImp.c
% ld -G -z defs MinimizationImp.o -o libnagCJavaInterface.so \
/usr/local/NAG/lib/libnag.so -lm -lc
where /usr/java/include, /usr/java/include/solaris and
/usr/local/NAG/lib
are directory names appropriate to your Java and NAG Fortran Library
installations.
C:> cl -DWINDOWS -Ic:\j2sdk1.4.2_02\include -Ic:\j2sdk1.4.2_02\include\win32
/Gz -LD MinimizationImp.c
c:\fldll204z\dll20dd.lib -FenagCJavaInterface.dll
where c:\j2sdk1.4.2_02\include, c:\j2sdk1.4.2_02\include\win32,
and c:\fldll204z
are directory names appropriate to your Java and NAG Fortran Library
installations, and dll20dd.lib is a copy of the NAG
Fortran Library.
% java Minimization